20 Nov 2011

How Fingerprint Scanners Work



A computer mouse with a built-in fingerprint scanner
Photo courtesy Siemens
Computerized fingerprint scanners have been a mainstay of spy thrillers for decades, but up until recently, they were pretty exotic technology in the real world. In the past few years, however, scanners have started popping up all over the place -- in police stations, high-security buildings and even on PC keyboards. You can pick up a personal USB fingerprint scanner for less than $100, and just like that, your computer's guarded by high-tech biometrics. Instead of, or in addition to, a password, you need your distinctive print to gain access.
In this article, we'll examine the secrets behind this exciting development in law enforcement and identity security. We'll also see how fingerprint scanner security systems stack up to conventional password and identity card systems, and find out how they can fail.


Fingerprint Basics

Fingerprints are one of those bizarre twists of nature. Human beings happen to have built-in, easily accessible identity cards. You have a unique design, which represents you alone, literally at your fingertips. How did this happen?
People have tiny ridges of skin on their fingers because this particular adaptation was extremely advantageous to the ancestors of the human species. The pattern of ridges and "valleys" on fingers make it easier for the hands to grip things, in the same way a rubber tread pattern helps a tire grip the road.
The other function of fingerprints is a total coincidence. Like everything in the human body, these ridges form through a combination of genetic and environmental factors. The genetic code in DNA gives general orders on the way skin should form in a developing fetus, but the specific way it forms is a result of random events. The exact position of the fetus in the womb at a particular moment and the exact composition and density of surrounding amniotic fluid decides how every individual ridge will form.
So, in addition to the countless things that go into deciding your genetic make-up in the first place, there are innumerable environmental factors influencing the formation of the fingers. Just like the weather conditions that form clouds or the coastline of a beach, the entire development process is so chaotic that, in the entire course of human history, there is virtually no chance of the same exact pattern forming twice.
Consequently, fingerprints are a unique marker for a person, even an identical twin. And while two prints may look basically the same at a glance, a trained investigator or an advanced piece of software can pick out clear, defined differences.
This is the basic idea of fingerprint analysis, in both crime investigation and security. A fingerprint scanner's job is to take the place of a human analyst by collecting a print sample and comparing it to other samples on record. In the next few sections, we'll find out how scanners do this.

Optical Scanner

A fingerprint scanner system has two basic jobs -- it needs to get an image of your finger, and it needs to determine whether the pattern of ridges and valleys in this image matches the pattern of ridges and valleys in pre-scanned images.
There are a number of different ways to get an image of somebody's finger. The most common methods today are optical scanning and capacitance scanning. Both types come up with the same sort of image, but they go about it in completely different ways.
The heart of an optical scanner is a charge coupled device (CCD), the same light sensor system used indigital cameras and camcorders. A CCD is simply an array of light-sensitive diodes called photosites, which generate an electrical signal in response to light photons. Each photosite records a pixel, a tiny dot representing the light that hit that spot. Collectively, the light and dark pixels form an image of the scanned scene (a finger, for example). Typically, an analog-to-digital converter in the scanner system processes the analog electrical signal to generate a digital representation of this image. See How Digital Cameras Workfor details on CCDs and digital conversion.
The scanning process starts when you place your finger on a glass plate, and a CCD camera takes a picture. The scanner has its own light source, typically an array of light-emitting diodes, to illuminate the ridges of the finger. The CCD system actually generates an inverted image of the finger, with darker areas representing more reflected light (the ridges of the finger) and lighter areas representing less reflected light (the valleys between the ridges).
Before comparing the print to stored data, the scanner processor makes sure the CCD has captured a clear image. It checks the average pixel darkness, or the overall values in a small sample, and rejects the scan if the overall image is too dark or too light. If the image is rejected, the scanner adjusts the exposure time to let in more or less light, and then tries the scan again.
If the darkness level is adequate, the scanner system goes on to check the image definition (how sharp the fingerprint scan is). The processor looks at several straight lines moving horizontally and vertically across the image. If the fingerprint image has good definition, a line running perpendicular to the ridges will be made up of alternating sections of very dark pixels and very light pixels.
If the processor finds that the image is crisp and properly exposed, it proceeds to comparing the captured fingerprint with fingerprints on file. We'll look at this process in a minute, but first we'll examine the other major scanning technology, the capacitive scanner.......

Capacitance Scanner

Like optical scanners, capacitive fingerprint scanners generate an image of the ridges and valleys that make up a fingerprint. But instead of sensing the print using light, the capacitors use electrical current.
The diagram below shows a simple capacitive sensor. The sensor is made up of one or moresemiconductor chips containing an array of tiny cells. Each cell includes two conductor plates, covered with an insulating layer. The cells are tiny -- smaller than the width of one ridge on a finger.
The sensor is connected to an integrator, an electrical circuit built around an inverting operational amplifier. The inverting amplifier is a complex semiconductor device, made up of a number of transistors, resistors and capacitors. The details of its operation would fill an entire article by itself, but here we can get a general sense of what it does in a capacitance scanner. (Check out this page on operational amplifiers for a technical overview.)
Like any amplifier, an inverting amplifier alters one current based on fluctuations in another current (see How Amplifiers Work for more information). Specifically, the inverting amplifier alters a supply voltage. The alteration is based on the relative voltage of two inputs, called the inverting terminal and the non-inverting terminal. In this case, the non-inverting terminal is connected to ground, and the inverting terminal is connected to a reference voltage supply and a feedback loop. The feedback loop, which is also connected to the amplifier output, includes the two conductor plates.
As you may have recognized, the two conductor plates form a basic capacitor, an electrical component that can store up charge (see How Capacitors Work for details). The surface of the finger acts as a third capacitor plate, separated by the insulating layers in the cell structure and, in the case of the fingerprint valleys, a pocket of air. Varying the distance between the capacitor plates (by moving the finger closer or farther away from the conducting plates) changes the total capacitance (ability to store charge) of the capacitor. Because of this quality, the capacitor in a cell under a ridge will have a greater capacitance than the capacitor in a cell under a valley.
To scan the finger, the processor first closes the reset switch for each cell, which shorts each amplifier's input and output to "balance" the integrator circuit. When the switch is opened again, and the processor applies a fixed charge to the integrator circuit, the capacitors charge up. The capacitance of the feedback loop's capacitor affects the voltage at the amplifier's input, which affects the amplifier's output. Since the distance to the finger alters capacitance, a finger ridge will result in a different voltage output than a finger valley.
The scanner processor reads this voltage output and determines whether it is characteristic of a ridge or a valley. By reading every cell in the sensor array, the processor can put together an overall picture of the fingerprint, similar to the image captured by an optical scanner.
The main advantage of a capacitive scanner is that it requires a real fingerprint-type shape, rather than the pattern of light and dark that makes up the visual impression of a fingerprint. This makes the system harder to trick. Additionally, since they use a semiconductor chip rather than a CCD unit, capacitive scanners tend to be more compact that optical devices......

Analysis

In movies and TV shows, automated fingerprint analyzers typically overlay various fingerprint images to find a match. In actuality, this isn't a particularly practical way to compare fingerprints. Smudging can make two images of the same print look pretty different, so you're rarely going to get a perfect image overlay. Additionally, using the entire fingerprint image in comparative analysis uses a lot of processing power, and it also makes it easier for somebody to steal the print data.
Instead, most fingerprint scanner systems compare specific features of the fingerprint, generally known asminutiae. Typically, human and computer investigators concentrate on points where ridge lines end or where one ridge splits into two (bifurcations). Collectively, these and other distinctive features are sometimes called typica.
The scanner system software uses highly complex algorithms to recognize and analyze these minutiae. The basic idea is to measure the relative positions of minutiae, in the same sort of way you might recognize a part of the sky by the relative positions of stars. A simple way to think of it is to consider the shapes that various minutia form when you draw straight lines between them. If two prints have three ridge endings and two bifurcations, forming the same shape with the same dimensions, there's a high likelihood they're from the same print.
To get a match, the scanner system doesn't have to find the entire pattern of minutiae both in the sample and in the print on record, it simply has to find a sufficient number of minutiae patterns that the two prints have in common. The exact number varies according to the scanner programming.

Pros and Cons

There are several ways a security system can verify that somebody is an authorized user. Most systems are looking for one or more of the following:
  • What you have
  • What you know
  • Who you are
To get past a "what you have" system, you need some sort of "token," such as an identity card with a magnetic strip. A "what you know" system requires you to enter a password or PIN number. A "who you are" system is actually looking for physical evidence that you are who you say you are -- a specific fingerprint, voice or iris pattern.
"Who you are" systems like fingerprint scanners have a number of advantages over other systems. To name few:
  • Physical attributes are much harder to fake than identity cards.
  • You can't guess a fingerprint pattern like you can guess a password.
  • You can't misplace your fingerprints, irises or voice like you can misplace an access card.
  • You can't forget your fingerprints like you can forget a password.
But, as effective as they are, they certainly aren't infallible, and they do have major disadvantages. Optical scanners can't always distinguish between a picture of a finger and the finger itself, and capacitive scanners can sometimes be fooled by a mold of a person's finger. If somebody did gain access to an authorized user's prints, the person could trick the scanner. In a worst-case scenario, a criminal could even cut off somebody's finger to get past a scanner security system. Some scanners have additional pulse and heat sensors to verify that the finger is alive, rather than a mold or dismembered digit, but even these systems can be fooled by a gelatin print mold over a real finger. (This site explains various ways somebody might trick a scanner.)
To make these security systems more reliable, it's a good idea to combine the biometric analysis with a conventional means of identification, such as a password (in the same way an ATM requires a bank card and a PIN code).
The real problem with biometric security systems is the extent of the damage when somebody does manage to steal the identity information. If you lose your credit card or accidentally tell somebody your secret PIN number, you can always get a new card or change your code. But if somebody steals your fingerprints, you're pretty much out of luck for the rest of your life. You wouldn't be able to use your prints as a form of identification until you were absolutely sure all copies had been destroyed. There's no way to get new prints.
But even with this significant drawback, fingerprint scanners and biometric systems are an excellent means of identification. In the future, they'll most likely become an integral part of most peoples' everyday life, just like keys, ATM cards and passwords are today.



How Web Servers Work


Have you ever wondered about the mechanisms that delivered this page to you? Chances are you are sitting at a computer right now, viewing this page in a browser. So, when you clicked on the link for this page, or typed in its URL (uniform resource locator), what happened behind the scenes to bring this page onto your screen?
If you've ever been curious about the process, or have ever wanted to know some of the specific mechanisms that allow you to surf the Internet, then read on. In this article, you will learn how Web servers bring pages into your home, school or office. Let's get started!

The Basic Process

Let's say that you are sitting at your computer, surfing the Web, and you get a call from a friend who says, "I just read a great article! Type in this URL and check it out. It's at http://www.howstuffworks.com/web-server.htm." So you type that URL into your browser and press return. And magically, no matter where in the world that URL lives, the page pops up on your screen.
At the most basic level possible, the following diagram shows the steps that brought that page to your screen:
Your browser formed a connection to a Web server, requested a page and received it.

Behind the Scenes

If you want to get into a bit more detail on the process of getting a Web page onto your computer screen, here are the basic steps that occurred behind the scenes:
The browser broke the URL into three parts:
  • The protocol ("http")
  • The server name ("www.howstuffworks.com")
  • The file name ("web-server.htm")
The browser communicated with a name server to translate the server name "www.howstuffworks.com" into an IP Address, which it uses to connect to the server machine. The browser then formed a connection to the server at that IP address on port 80. (We'll discuss ports later in this article.)
Following the HTTP protocol, the browser sent a GET request to the server, asking for the file "http://www.howstuffworks.com/web-server.htm." (Note that cookies may be sent from browser to server with the GET request -- see How Internet Cookies Work for details.)
The server then sent the HTML text for the Web page to the browser. (Cookies may also be sent from server to browser in the header for the page.) The browser read the HTML tags and formatted the page onto your screen.
If you've never explored this process before, that's a lot of new vocabulary. To understand this whole process in detail, you need to learn about IP addresses, ports, protocols... The following sections will lead you through a complete explanation.

The Internet

So what is "the Internet"? The Internet is a gigantic collection of millions of computers, all linked together on a computer network. The network allows all of the computers to communicate with one another. A home computer may be linked to the Internet using a phone-line modemDSL or cable modem that talks to an Internet service provider (ISP). A computer in a business or university will usually have a network interface card (NIC) that directly connects it to a local area network (LAN) inside the business. The business can then connect its LAN to an ISP using a high-speed phone line like a T1 line. A T1 line can handle approximately 1.5 million bits per second, while a normal phone line using a modem can typically handle 30,000 to 50,000 bits per second.
ISPs then connect to larger ISPs, and the largest ISPs maintain fiber-optic "backbones" for an entire nation or region. Backbones around the world are connected through fiber-optic lines, undersea cables or satellitelinks (see An Atlas of Cyberspaces for some interesting backbone maps). In this way, every computer on the Internet is connected to every other computer on the Internet.

Clients and Servers

In general, all of the machines on the Internet can be categorized as two types: servers and clients. Those machines that provide services (like Web servers or FTP servers) to other machines are servers. And the machines that are used to connect to those services are clients. When you connect to Yahoo! at www.yahoo.com to read a page, Yahoo! is providing a machine (probably a cluster of very large machines), for use on the Internet, to service your request. Yahoo! is providing a server. Your machine, on the other hand, is probably providing no services to anyone else on the Internet. Therefore, it is a user machine, also known as a client. It is possible and common for a machine to be both a server and a client, but for our purposes here you can think of most machines as one or the other.
A server machine may provide one or more services on the Internet. For example, a server machine might have software running on it that allows it to act as a Web server, an e-mail server and an FTP server. Clients that come to a server machine do so with a specific intent, so clients direct their requests to a specific software server running on the overall server machine. For example, if you are running a Web browser on your machine, it will most likely want to talk to the Web server on the server machine. Your Telnetapplication will want to talk to the Telnet server, your e-mail application will talk to the e-mail server, and so on..

IP Addresses

To keep all of these machines straight, each machine on the Internet is assigned a unique address called an IP address. IP stands for Internet protocol, and these addresses are 32-bit numbers, normally expressed as four "octets" in a "dotted decimal number." A typical IP address looks like this:
216.27.61.137
The four numbers in an IP address are called octets because they can have values between 0 and 255, which is 28 possibilities per octet.
Every machine on the Internet has a unique IP address. A server has a static IP address that does not change very often. A home machine that is dialing up through a modem often has an IP address that is assigned by the ISP when the machine dials in. That IP address is unique for that session -- it may be different the next time the machine dials in. This way, an ISP only needs one IP address for each modem it supports, rather than for each customer.
If you are working on a Windows machine, you can view a lot of the Internet information for your machine, including your current IP address and hostname, with the command WINIPCFG.EXE (IPCONFIG.EXE for Windows 2000/XP). On a UNIX machine, type nslookup at the command prompt, along with a machine name, like www.howstuffworks.com -- e.g. "nslookup www.howstuffworks.com" -- to display the IP address of the machine, and you can use the command hostname to learn the name of your machine. (For more information on IP addresses, see IANA.)
As far as the Internet's machines are concerned, an IP address is all you need to talk to a server. For example, in your browser, you can type the URL http://209.116.69.66 and arrive at the machine that contains the Web server for HowStuffWorks. On some servers, the IP address alone is not sufficient, but on most large servers it is -- keep reading for details.

Domain Names

Because most people have trouble remembering the strings of numbers that make up IP addresses, and because IP addresses sometimes need to change, all servers on the Internet also have human-readable names, called domain names. For example, www.howstuffworks.com is a permanent, human-readable name. It is easier for most of us to remember www.howstuffworks.com than it is to remember 209.116.69.66.
The name www.howstuffworks.com actually has three parts:
  1. The host name ("www")
  2. The domain name ("howstuffworks")
  3. The top-level domain name ("com")
Domain names within the ".com" domain are managed by the registrar called VeriSign. VeriSign also manages ".net" domain names. Other registrars (like RegistryPro, NeuLevel and Public Interest Registry) manage the other domains (like .pro, .biz and .org). VeriSign creates the top-level domain names and guarantees that all names within a top-level domain are unique. VeriSign also maintains contact information for each site and runs the "whois" database. The host name is created by the company hosting the domain. "www" is a very common host name, but many places now either omit it or replace it with a different host name that indicates a specific area of the site. For example, in encarta.msn.com, the domain name for Microsoft's Encarta encyclopedia, "encarta" is designated as the host name instead of "www.".

THE WHOIS COMMAND

On a UNIX machine, you can use the whoiscommand to look up information about a domain name. You can do the same thing using the whois form at VeriSign. If you type in a domain name, like "howstuffworks.com," it will return to you the registration information for that domain, including its IP address.

Name Servers

A set of servers called domain name servers (DNS) maps the human-readable names to the IP addresses. These servers are simple databases that map names to IP addresses, and they are distributed all over the Internet. Most individual companies, ISPs and universities maintain small name servers to map host names to IP addresses. There are also central name servers that use data supplied by VeriSign to map domain names to IP addresses.
If you type the URL "http://www.howstuffworks.com/web-server.htm" into your browser, your browser extracts the name "www.howstuffworks.com," passes it to a domain name server, and the domain name server returns the correct IP address for www.howstuffworks.com. A number of name servers may be involved to get the right IP address. For example, in the case of www.howstuffworks.com, the name server for the "com" top-level domain will know the IP address for the name server that knows host names, and a separate query to that name server, operated by the HowStuffWorks ISP, may deliver the actual IP address for the HowStuffWorks server machine.
On a UNIX machine, you can access the same service using the nslookup command. Simply type a name like "www.howstuffworks.com" into the command line, and the command will query the name servers and deliver the corresponding IP address to you.
So here it is: The Internet is made up of millions of machines, each with a unique IP address. Many of these machines are server machines, meaning that they provide services to other machines on the Internet. You have heard of many of these servers: e-mail servers, Web servers, FTP servers, Gopher servers and Telnet servers, to name a few. All of these are provided by server machines.

Ports

Any server machine makes its services available to the Internet using numbered ports, one for each service that is available on the server. For example, if a server machine is running a Web server and an FTP server, the Web server would typically be available on port 80, and the FTP server would be available on port 21. Clients connect to a service at a specific IP address and on a specific port.
Each of the most well-known services is available at a well-known port number. Here are some common port numbers:
  • echo 7
  • daytime 13
  • qotd 17 (Quote of the Day)
  • ftp 21
  • telnet 23
  • smtp 25 (Simple Mail Transfer, meaning e-mail)
  • time 37
  • nameserver 53
  • nicname 43 (Who Is)
  • gopher 70
  • finger 79
  • WWW 80
If the server machine accepts connections on a port from the outside world, and if a firewall is not protecting the port, you can connect to the port from anywhere on the Internet and use the service. Note that there is nothing that forces, for example, a Web server to be on port 80. If you were to set up your own machine and load Web server software on it, you could put the Web server on port 918, or any other unused port, if you wanted to. Then, if your machine were known as xxx.yyy.com, someone on the Internet could connect to your server with the URL http://xxx.yyy.com:918. The ":918" explicitly specifies the port number, and would have to be included for someone to reach your server. When no port is specified, the browser simply assumes that the server is using the well-known port 80.

Protocols

Once a client has connected to a service on a particular port, it accesses the service using a specific protocol. The protocol is the pre-defined way that someone who wants to use a service talks with that service. The "someone" could be a person, but more often it is a computer program like a Web browser. Protocols are often text, and simply describe how the client and server will have their conversation.
Perhaps the simplest protocol is the daytime protocol. If you connect to port 13 on a machine that supports a daytime server, the server will send you its impression of the current date and time and then close the connection. The protocol is, "If you connect to me, I will send you the date and time and then disconnect." Most UNIX machines support this server. If you would like to try it out, you can connect to one with the Telnet application. In UNIX, the session would look like this:
%telnet web67.ntx.net 13Trying 216.27.61.137...Connected to web67.ntx.net.Escape character is '^]'.Sun Oct 25 08:34:06 1998Connection closed by foreign host.
On a Windows machine, you can access this server by typing "telnet web67.ntx.net 13" at the MSDOS prompt.
In this example, web67.ntx.net is the server's UNIX machine, and 13 is the port number for the daytime service. The Telnet application connects to port 13 (telnet naturally connects to port 23, but you can direct it to connect to any port), then the server sends the date and time and disconnects. Most versions of Telnet allow you to specify a port number, so you can try this using whatever version of Telnet you have available on your machine.
Most protocols are more involved than daytime and are specified in Request for Comment (RFC) documents that are publicly available (see http://sunsite.auc.dk/RFC/ for a nice archive of all RFCs). Every Web server on the Internet conforms to the HTTP protocol, summarized nicely in The Original HTTP as defined in 1991. The most basic form of the protocol understood by an HTTP server involves just one command: GET. If you connect to a server that understands the HTTP protocol and tell it to "GET filename," the server will respond by sending you the contents of the named file and then disconnecting. Here's a typical session:
%telnet www.howstuffworks.com 80Trying 216.27.61.137...Connected to howstuffworks.com.Escape character is '^]'.GET http://www.howstuffworks.com/ ...Connection closed by foreign host.
In the original HTTP protocol, all you would have sent was the actual filename, such as "/" or "/web-server.htm." The protocol was later modified to handle the sending of the complete URL. This has allowed companies that host virtual domains, where many domains live on a single machine, to use one IP address for all of the domains they host. It turns out that hundreds of domains are hosted on 209.116.69.66 -- the HowStuffWorks IP address.

Putting It All Together

Now you know a tremendous amount about the Internet. You know that when you type a URL into a browser, the following steps occur:
The browser breaks the URL into three parts:
  1. The protocol ("http")
  2. The server name ("www.howstuffworks.com")
  3. The file name ("web-server.htm")
The browser communicates with a name server to translate the server name, "www.howstuffworks.com," into an IP address, which it uses to connect to that server machine. The browser then forms a connection to the Web server at that IP address on port 80. Following the HTTP protocol, the browser sends a GET request to the server, asking for the file "http://www.howstuffworks.com/web-server.htm." (Note that cookiesmay be sent from browser to server with the GET request -- see How Internet Cookies Work for details.) The server sends the HTML text for the Web page to the browser. (Cookies may also be sent from server to browser in the header for the page.) The browser reads the HTML tags and formats the page onto your screen.

Extras: Security

You can see from this description that a Web server can be a pretty simple piece of software. It takes the file name sent in with the GET command, retrieves that file and sends it down the wire to the browser. Even if you take into account all of the code to handle the ports and port connections, you could easily create aC program that implements a simple Web server in less than 500 lines of code. Obviously, a full-blown enterprise-level Web server is more involved, but the basics are very simple.
Most servers add some level of security to the serving process. For example, if you have ever gone to a Web page and had the browser pop up a dialog box asking for your name and password, you have encountered a password-protected page. The server lets the owner of the page maintain a list of names and passwords for those people who are allowed to access the page; the server lets only those people who know the proper password see the page. More advanced servers add further security to allow an encryptedconnection between server and browser, so that sensitive information like credit card numbers can be sent on the Internet.
That's really all there is to a Web server that delivers standard, static pages. Static pages are those that do not change unless the creator edits the page.

Extras: Dynamic Pages

But what about the Web pages that are dynamic? For example:
  • Any guest book allows you to enter a message in an HTML form, and the next time the guest book is viewed, the page will contain the new entry.
  • The whois form at Network Solutions allows you to enter a domain name on a form, and the page returned is different depending on the domain name entered.
  • Any search engine lets you enter keywords on an HTML form, and then it dynamically creates a page based on the keywords you enter.
In all of these cases, the Web server is not simply "looking up a file." It is actually processing information and generating a page based on the specifics of the query. In almost all cases, the Web server is using something called CGI scripts to accomplish this feat. CGI scripts are a topic unto themselves, and are described in the HowStuffWorks article How CGI Scripting Work..









How to Connect Your Computer to Your TV


In 2005, then-Microsoft Chairman and CEO Bill Gates shows off the company's Windows XP Media Center Edition software, which can be used to deliver video, music and photos from a computer to a TV.
Jeff Christensen/WireImage/Getty Images
There's something painfully ironic about sitting on your living room couch, just a few feet away from a beautiful widescreen HDTV, watching a movie on your tiny laptop. Yet this is what most of us do when we download movies or TV shows onto our computers.
The same goes for showing off our latest digital photos to friends. We all huddle around the 15-inch computer display while the TV screen goes unused. And what about that PowerPoint presentation you just gave at work? Wouldn't it have looked 1,000 times better on the wall-mounted plasma display in the conference room?
There are many compelling reasons why we want to connect our computers to our televisions, especially now that HDTVs are so popular. Everything from movies to photos to work presentations were made for the big-screen experience.
The first personal computers used TVs for monitors, but computer graphics technology quickly outpaced the image quality on standard-definition TVs (SDTVs). The typical modern computer monitor has the ability to display images at a much higher resolution than a regular TV. A computer monitor can display more individual pixels than an SDTV.
Even today, hooking a computer to an SDTV only makes sense if you want to use your computer as a DVD player. If you try to use an SDTV as a monitor, you'll have a hard time getting your full desktop to fit on the screen.
But with the advent of high-resolution, high-definition TVs like flat-panel LCDs, plasma, LCoS, and DLPdisplays, televisions now make excellent computer monitors. In fact, that's what the manufacturers of PC-based media centers are trying to achieve. The tricky part is figuring out exactly which TVs work with which computers and how to connect them all together.
Keep reading to learn more about bringing your small-screen life to the big leagues.

Screen Resolution and Aspect Ratio

Many people are familiar with the concept of screen resolution. Resolution is a measurement of how many individual pixels your TV or computer monitor can display at once. The old cathode ray TV (CRT) in your basement can display the equivalent of about 300,000 pixels [source: Kindig]. The latest HDTVs can display more than 2 million pixels. With more pixels, the image can be rendered in greater detail. It's the difference between painting a portrait with a thick sponge block or a small, delicate brush.
The standard way to classify TV resolution is with numbers like 480i, 720p, 1080i and 1080p. The bigger the number, the greater the screen resolution. The little "i" and "p" stand for interlaced and progressive scan. This has to do with the way in which the image is rendered on the screen. Refresh rates on TVs andcomputer monitors are measured in hertz. A refresh rate of 60 times per second translates to 60 hertz. An interlaced-scan TV refreshes half of the screen image 60 times per second. It refreshes the odd-numbered horizontal lines first and then the even-numbered lines. The result is that the full screen refreshes 30 times a second.
On a progressive scan television, the entire screen refreshes 60 times a second. The result is that progressive scan TVs have a noticeably smoother image when watching sports or other video with fast-moving action. All computer monitors are progressive scan [source: PCMag.com]. Some even have refresh rates faster than 60 times a second. This is why interlaced SDTVs make for lousy computer monitors. When you scroll, the image can't refresh fast enough to keep things smooth. As a result, you see that telltale flicker.
Resolution is important, but you must also take a screen's aspect ratio into account. Your goal when hooking your TV up as a monitor is to make the entire image fit within the boundaries of the TV screen. SDTVs use a 4:3 aspect ratio -- the ratio of the screen's width to its height is 4 to 3. HDTVs have a native 16:9 aspect ratio. While many computer monitors share those aspect ratios, not all of them do, and your computer may support many different screen resolutions with different aspect ratios.
In fact, your computer's preferences are unlikely to tell you the aspect ratio, and instead will tell you the resolution. The horizontal x vertical measurement is also the most common way to label computer monitor resolution. Some typical monitor resolutions are 640 x 480, 800 x 600 and 1024 x 768. If you don't know your monitor resolution, you can find out by going to whatismyscreenresolution.com. If you aren't connected to the Internet and you're using a Windows PC, right-click on the desktop and choose Preferences. Then choose the Settings tab. On a Mac, go to System Preferences and click Displays.
The trick is to find the resolution that best fits the TV's aspect ratio. This may not be as big a deal as it sounds, though. Modern operating systems can usually match the attached monitor's aspect ratio automatically. If your computer doesn't, you can manually adjust the settings in your computer's preferences to make it fit.
But there's more to hooking these two machines together than resolution and aspect ratio. You still have to get the information from the computer to the TV. In order to do that, we've got to solve the cable conundrum.

S-Video cables
©iStockphoto/FokinOl

Computer TV Cables

If you read our article "How do I know which cables to use?" then you know there is a baffling number of audio/video cables on the market. You'll have to make some sense of the different types of wiring necessary to connect your computer to your TV. First you need to figure out what kinds of audio/video outputs your computer has and what kinds of audio/video inputs your TV has. If you're lucky, you'll find a match right away. But depending on the type of equipment you own, you may need to get creative.
First, let's talk about which cables you'd use to connect a computer to a standard-definition TV. The most common video inputs on an SDTV are composite, S-video and component video. On computers, the most common video output is S-video. On a desktop PC, you'll find the 9-pin S-video jack on your graphics card next to where you connect your monitor.
Some Windows laptops also have S-video-out jacks, but most have 15-pin VGA jacks for connecting to external monitors. Luckily, it's easy to find adapters and special cables that have VGA connectors on one end and S-video connectors on the other. Apple also sells a wide variety of adapters to connect Mac desktops and laptops to the S-video or composite jack on SDTVs.
Even if you have an old TV that only accepts coaxial video cable (the one-pin variety that's mostly used for cable TV and satellite connections), you can use something called an RF converter box that can convert S-video or VGA input into coaxial output.
For connecting a computer to an HDTV, it's the same story. The most common HDTV inputs are component video, DVI and HDMI. If your graphics card doesn't have one of these outputs, then you'll need to buy a special converter box or adapter. For example, if your computer only has a VGA jack and your HDTV only accepts HDMI, then you'll need to buy a small box that will convert the signal for you.
If you're serious about playing high-definition content from your computer on your HDTV, then you should upgrade to a graphics card with a DVI or HDMI output. Most newer Apple laptops come with a Mini DisplayPort video output that easily connects with the DVI or HDMI inputs on an HDTV.
All of the cables that we've mentioned so far are video-only cables, which means that you'll need separate cables to handle your audio. The easiest solution is to connect some computer speakers to your audio card's headphone or audio-out jack. If you want to use your TV's built-in speakers, then you'll need to buy a 1/8-inch stereo mini-plug-to-RCA cable.
For the best possible audio, you'll need to invest in an audio card for your computer with either an optical or digital coaxial audio output. These connections carry high-bandwidth digital audio signals using cables that can be plugged directly into your home theater receiver.
Even if you have the right cables and have done your homework about resolutions, you still might have some problems connecting your computer to your TV. In the next section, we'll share some troubleshooting tips.

HDCP PROBLEMS

The majority of high-definition DVDs and downloadable content is copy protected with a technology called HDCP (High-bandwidth Digital Content Protocol). This means that every piece of equipment you use to play HD content must be HDCP-enabled -- everything from the computer to the cable to the HDTV. If you can't play HD content through your computer, than your graphics card might not be HDCP compliant.

Computer to TV Troubleshooting

The biggest problem with connecting your computer to your TV is that, generally speaking, computers and TVs don't display at the same resolutions. For example, the closest thing to the HDTV resolution 720p (1280 x 720) is a monitor display mode called XGA (1280 x 960). Not quite the same. And the closest thing to 1080p (1920 x 1080) is a monitor display mode called WUXGA (1920 x 1200). Again, not quite the same.
The result, in most cases, is something called overscan, where the full computer screen image doesn't fit on the TV screen. Overscan is a bigger problem on SDTVs where the native screen resolution is much smaller than your computer's display. If you're going to use an SDTV as a monitor, plan on lowering your screen resolution to 800 x 600.
HDTVs also have overscan problems, but usually only the very edge of the computer image gets cropped. A bigger problem with HDTVs is when the TV refuses to display a signal that doesn't fit its native resolution.
Luckily, most HDTVs have the ability to scale incoming signals to match their native screen resolution. This involves either upconverting lower-resolution signals in the attempt to bring the resolution up to high definition or downconverting higher-resolution signals for lower-resolution screens. It's not perfect, but for most casual viewers, there's little to no noticeable loss in image quality.
In rare cases, the HDTV won't recognize the resolution of the signal sent by your computer. When you connect an external display to your computer, most graphics cards will automatically try to find a good match for the display's native resolution. If this doesn't work, you will probably need to edit your resolution with third-party software.
Two programs are considered the best solutions for solving connectivity problems between a computer and a TV: PowerStrip for Windows and DisplayConfigX for Mac. Both of these programs allow you to match your graphics card's resolution precisely with the native resolution of your TV. If your HDTV is 1080p, you can go into one of these programs and switch your computer's resolution to 1920 x 1080, even if this wasn't previously an option.
Avoid increasing the refresh rate on your graphics card, unless you have a 120-hertz HDTV. If you send a signal with a refresh rate over 60 hertz to a normal HDTV, you could damage the TV [source: Komando].
For lots more information about home theater systems, follow the links on the next page.